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1. Introduction

In this note we consider a problem that arises in
rare decay experiments that observe no, or few, candi-
date events : How can one include the systematic uncer-
tainty of the experimental sensitivity in the upper limit
that is reported for the branching ratio? Similar prob-
lems arise in measuring limits on the production cross
sections of rare particles and elsewhere . Published
experimental papers have until recently usually ignored
the problem, to the extent that it has been rare for the
systematic uncertainties even to have been quoted .
This general policy is no doubt based on an intuition
that the systematic uncertainty in these cases is rela-
tively unimportant compared with the Poisson fluctua-
tions . It is, however, equally clear intuitively that an
experiment with a small systematic uncertainty is to be
preferred to an equivalent one with a larger uncer-
tainty . The formulas derived in this paper allow that
preference to be made quantitative with a minimum of
calculation .

In section 2 we begin with a discussion of the basic
problem and consider in detail the common case of no
observed events (n = 0) and 90% confidence level (CL).
We use this case to illustrate several practical methods
of computing the upper limit and to clarify the consid-
erations common to them . For a wide class of situa-
tions, the calculation can be reduced to a simple, easily
applied formula. In section 3 we treat the more general
case n >_ 0 and confidence levels other than 90%, but
with no expected background. An equally simple for-

2. The case n = 0
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We discuss the problem of incorporating the uncertainty in the experimental sensitivity into the calculation of an upper
confidence limit on a branching ratio or similar quantity . If the number of events is small or zero but without background, the
correction to the usual result is given by a simple, easily applied formula. The case of an accurately known background also has a
simple solution .

mula results. Finally, section 4 considers this problem
for the case of a known background rate .

Our statistical approach includes both classical and
Bayesian elements [1]. Our treatment of the Poisson
parameter is classical, the type of statistics we gener-
ally prefer. Because we average over a probability
distribution for the experimental sensitivity, our treat-
ment of that quantity is necessarily Bayesian . For the
problem at hand, a consistently classical approach
yielded results that were physically unacceptable in the
sense that a larger systematic error produced a smaller
upper limit [2] .

Consider an experiment to determine the value of a
branching ratio R by observing the number of counts n
in a detector . Let R, be the true value of the branching
ratio and S, be the true value of the sensitivity factor, a
combination of beam flux, detector acceptance, etc.,
defined such that the mean number of events expected
a ILt = RA . The number of events actually observed
in an experiment will be a sample drawn from a Pois-
son distribution P(n ; p,,). To draw an inference about
the value of R, requires information about the value of
S, . This information is obtained from subsidiary mea-
surements that give an estimate S for S,, along with an
estimate of the uncertainty o, . We follow the useage
common in this branch of physics by referring to the
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expected fluctuation in the number of events as the
"statistical" uncertainty and the uncertainty in the
sensitivity factor as the "systematic" uncertainty ._

In considering how to specify an upper limit R� on
R, in the case that the experiment observes no events,
we wish to make contact with two well-understood
situations:

r) A significant number ofevents its observed (it >> 1) .

The point estimate of R, is then R = n/S. Using a
standard approximation, an experimenta list will nor-
mally assign an uncertainty Rß.1 /it + or to this esti-
mate as a measure of the central confidence interval,
where ar = Q/S is the relative uncertainty in S.

ii) No events are observed (tt = 0), but there is no
uttcertaùtty in the cab{e of S, (cr = 0). It is well-known
that, from either a classical or a Bayesian viewpoint [1],
the 90%c confidence-level upper limit on the parameter
u_, is In 10 = 2.30, and hence the upper limit on R, is
R,) = 2.30/S . (The first zero in the subscript identifies
the n = 0 case and the second distinguishes the zero
variance upper limit from the more general case dis-
cussed below.) The classical upper limit is given by the
value of u that makes P(0 ; p,) = 0.1, i .e . the value for
which an observation as small as or smaller than the
actual one is no more than 10% probable . If there
were no r an analytic solution to this equation, one
could explore the function P(0; p,) numerically or by a
Monte Carlo technique to find the apppropriate value
of

The problem we are considering is like case (II), but
with non-zero variance for S, . The probability of ob-
serving no events po(R, , S,) = P(0; R, , S,) is a func-
tion of both R, and S, . The value of R . is unknown
and indeed is what we are trying to determine, or at
least to bound. The value of S, is known in a proba-
bilistic sense from the subsidiary measurements. As-
suming S is an unbiased estimator and that the
Bayesian prior probability distribution of S, is a con-
stant, the posterior probability of S, ^ being in any
neighborhood of S is distributed about S with variance
a - . We designate the probability density function (pdf)
of this distribution by W(S; S, a). (Here and subse-
quently we use simply S instead of S, to designate the
true value of the sensitivity.) Note that the upper limit
on the mean number of events that would be observed
in many repetitions of the experiment is 2.30 and is
unaffected by our ignorance of the exact value of the
sensitivity, which is required only for deducing R, .
A reasonable generalization of the definition of a

90% confidence-level upper limit in this case is to
explore the function p�(R, S) and find the value R�
that makes (p ( ,> = 0.1, where ( ) indicates an average
over W(S; S, o,) throughout this paper . This evaluation
can be carried out with a straightforward Monte Carlo
calculation, which we have found quite useful . How-
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ever, additional insight is obtained by considering the
problem from two analytical approaches.

2.1 . Integral method

Beginning with the case of no observed events (n =
0), the first analytic approach expresses the above
average as an explicit integral [3-5] over the Poisson
probabilities of having zero events, weighted by the
probability density W(S ; S, ~ ) :

- RSpJR) =- (pjR, S))

	

f e

	

W(S ; S, o, ) dS .

	

(1)
0

In the most complex cases this integral must be per-
formed numerically, with a Monte Carlo approach
being one option, but simplification may be available in
some cases. Very commonly W can be considered
Gaussian, so that

e- RS

	

1

	

,
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This form for W requires o, to be small compared to S;
we can them extend the lower limit of the integral to
-x with negligible change . (If that is not the case, the
suitability of a Gaussian form for W is doubtful ; a
log-normal distribution [6] may provide a better model.)
Upon completing the square in the exponent and carry-
ing out the integration, we have

p� ( R) = exp( -RS + R'0-'/2)

= exp(-RS + (RSo-r )
2
/2) .

	

(3)

We find the 90% confidence-level upper limit R � by
solving the equation p�(R � ) = 0.1, yielding

R, = ( 1 - ~ 1 - 2o,,~- In 10 )/(go-,- ) -	(4)

Expanding the square root for small ar we have

As shown below in a second approach, this equation is
quite general and not restricted to the Gaussian distri-
bution . We defer discussion of this result to section 2.2 .

If there are events (tt > 0), the principle is the same,
though the amount of computation increases in this
approach . For Gaussian W, the probability of observ-
ing one event is

p,(R)=R(S-Ro- ,) exp(-RS+R'0, '-/2)

= (R9 - (Rgo-,
)2)
p o (R) .

	

(6)

Given one event_, the upper limit is found by solving
numerically for R, in the equation po( Rj ) + p,( R j ) _
0.1 . One could again expand this equation in fir, or
perhaps make a series expansion in the integrand .



Instead, we proceed to the second approach, which
naturally incorporates the series expansion from the
beginning .

2.2. Expansion method

In the second analytic approach we work directly
with the moments of W(S; S, a) to derive upper limits
without explicit integration . This approach has the
advantage of being conveniently generalized, as shown
in sections 3 and 4. We start with the observation that,
because the probability of observing zero events, pc,(R,
S) = e -RS , is a concave upward function, the value
averaged over an interval in S is greater than the value
at the center of the interval . Hence R must be slightly
larger to give the same value of (po) as obtained
without the averaging.

W~- proceed by making a Taylor expansion of po(R,
S) about the point one would have for t, .e upper limit
if there were no uncertainty in S . This is the point
R = R�� , S = S, as in case II above. Carrying out the
expansion in two variables through second-order terms
we have

11Po

AS +
p
-ARas aR

Inserting the derivatives of po(R, S) we obtain

APO _ { -R��AS - SAR + R02()( OS) 2
/2

Averaging eq . (8) over S yields

where we have used the definition o, 2 = (AS2 ) and the
assumption that S is unbiased, from which it follows
that (0S) = 0 . We have also neglected the second-
order term in AR as compared to the first-order term,
on the assumption that §AR << 2 . This term is retained
in the more general treatment of section 3 .

The average probability at the shifted point is

(Po(Roo+àR, S)) = Po(Rcu>> S) + (àp,)) .

	

(10)

Both evaluations of po in this equation equal 0.1 by
definition, because the first iç Otie aVe-- ag: r~n~,~h:°ity
of zero events at the redefined upper limit +
®R and the second is the probability at the expansion
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1)ASOR + S'(AR)2/2) e-Rier~ .

point, the zero variance case 11 . Therefore (®p�) = 0
and it follows from eq . (9) that

OR = R;acU
21(2S) .

	

(11)
Finally, the new upper limit for the case n = 0 is
Rc, = 2 .30(1 + 2.300',"/2)/S.

	

(12)
Eq. (12) (or eq . (5)) is a useful answer to the

problem with which we began, having several desirable
properties . Most importantly it goes over into the stan-
dard result of case II as Q,, - 0 and it depends on Qr
quadratically, which agrees with one's expectations
based on case 1 . It justifies to a large degree the long
standing custom of ignoring the contribution of Qr,
since the effect of this term turns out to be fairly small
(see the fifth column of table 1). But eq. (12) appropri-
ately assigns a slightly smaller limit, other things being
equal, to the experiment which has the smaller normal-
ization uncertainty, while making clear that the most
important consideration is to have S as large as possi-
ble . According to eq . (12) it is unnecessarily conserva-
tive to incorporate the systematic uncertainty by relax-
ing the bound for Q = 0 by a factor of (1 + o,,,), as has
sometimes been the practice . The formula gives some
guidance on how much effort it is worth devoting to
measuring S as opposed to pursuing the main mea-
surement.

3 . General case

�
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In the general case, the probability of observing n
or fewer events is

P�(R , S) = Y, (RS)' e -RS/1 , .

	

(13)
j=o

Again we wish to expand about the upper limit point
(R�� , S) that one would adopt in the zero variance
case . In taking the first derivative of p� we note that
all terms in the sum but one cancel, so

ap,,/aR= -RnSn+I e -Rs/ni,

	

(14)

with a symmetrical expression for ap�/aS. The remain-
ing derivatives in eq . (7) are readily evaluated, so that
after averaging over S we have a result similar to eq .
(9) :

(AP,,) = ( - (R.,ccS)"SAR

+(R �oS)It-~(R �oS-n)(SAR)-/2

(15)

This time the second-order terms in AR have been
retaircd . The value of eq . (15) is zero by the same
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reasoning as before and one can readily solve the
resulting quadratic equation for ®R.

Before_doing so, we simplify the notation by defin-
ing U�

	

R �S and similarly for U�� . Solving for DU�
0RS we have

DU� = U,,o{I - (I -ar`E,
)1/2)1E,

	

(16)

where we have defined E� = U�� - n for compactness .
E� represents the excess of the upper limit of a Poisson
parameter over the number n of observed events, for a
specified confidence level . The value of U� itself is

U� = U,,()[I + (I - (I -

	

_)E,i))1-)/E� ] .

	

(17a)011

As in section 2.1, we can simplify this equation by
expanding the square root and retaining terms either
through second order in Q,~-
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Eq . (17c) is the generalization of eq . (12) for arbi-
trary n and reduces to it for n = 0 . It has all the
desirable properties enumerated for eq . (12) and ap-
plies to any confidence level . For 90% CL the values of
U,,o are the familiar 2.30, 3.89, . . . for n = 0, L...,
and E� = 2.30, 2.89, etc . U� is the modified value,
taking into account the systematic uncertainty. From
the definition of UR , the upper limit on the branching
ratio is R � = U�/S. Eq . (17a) should in principle be
more accurate than eq . (17c), at the cost of some
complexity. The square root in eq . (17a) shows that the
result cannot be correct for values of ar which are too
large, and that the limiting value of Q, must become
smaller as n increases since it requires

Qr < 1 /E� .	(18)

Clearly this behavior is a result of the Taylor approxi-
mation and indicates where it breaks down .

To test eqs . (17a), (17b) and (17c), a numerical
evaluation of U� was made via a Monte Carlo calcula-
tion, assuming Gaussian systematic uncertainty . The
results are displayed in table 1 for n = 0 to 3 . One sees
that out to o-r = 0.3 and n = 3 the simplest equation
(17c) is perfectly adequate . The bet er approximation
(17b) does slightly better at the larF est values, but the
"exact" eq . (17a) is actually somewhat worse, especially
considering that it is undefined for n = 3 and o r > 0.27.
The approximation of expanding the square root seems
to compensate the Taylor approximation to some de-
gree .

The simple and intuitive result of eq . (17c) is ade-
quate for most practical purposes . The unusual case
with ar > 0.3 would probably be dealt with by numeri-
cal integration, and if an observation gave n > 3 events

Table 1
For various n, the 90% confidence-level upper limit is given
as a function of Qr according to the three different approxi-
mations in the text and compared with a Monte Carlo result
(M.C.)

one would normally give a point estimate rather than a
limit . But as long as the value of o r does not violate
condition (18) by very much, it appears that the for-
mula will still work for even larger n . Otherwise one
can use eq . (17b), and in extreme cases go back to the
explicit integral .

4. Background subtraction

If there is a background that must be subtracted,
the determination - even the definition - of an upper
limit becomes more difficult [5,7-9] . In the case that
the mean rate of the background, B, is known with
negligible uncertainty, the Particle Data Group has
recommended [101 the adoption of the Bayesian proce-
dure suggested by Helene [5] . In our notation their eq .
(11.22) for the probability of observing n or fewer
events becomes

n

p� =K e -RS E (B+RS)'/j!,

	

(19a)
j=()

where the normalization K depends on B and' n
through

n
K-1 = 57

j=o

To include the systematic uncertainty, a treatment like
that given in section 3, but for simplicity going only to

n Qr Eq . (17a) Eq. (17b) Eq . (17c) M.C .
0 0.90 2.30 2.30 2 .30 2.30

0.10 2.33 2.33 2 .33 2.33
0.20 2.41 2 .41 2.41 2.42
0.30 2 .58 2.57 2A 2.60

1 0.00 3 .89 3.89 3.89 3 .89
0.10 3 .95 3.95 3.95 3 .94
0.20 4.14 4.13 4 .11 4.13
0.30 4.57 4.49 4.40 4.51

2 0.00 5.32 5.32 5.32 5.32
0.10 5.41 5 .41 5 .41 5 .41
0.20 5.72 5.71 5.67 5 .71
0.30 6.78 6.31 6.11 6.30

3 0.00 6 .68 6.68 6.68 6.68
0.10 6.81 6.81 6.80 6.80
0.20 7.27 7.24 7.17 7.21
0.30 . . . 8.12 7.79 8.05

U� = Uno[ 1 +E�(Qi/2){1 + (E�Qr/2)`)], (17b)

or only through first order:

U� = Unt)(1 + E,,0111"/2) . (17c)



linear terms in G R, gives [I 1 ]
DU� ={(Uno+B-n)l(U,,()+B))U,ô,I 2/2.

	

(20)
In this instance U�( , represents the upper limit that
would be read off the graphical solutions provided for
this analysis [5,10] . For B = 0 this result agrees with eq .
(17c) for all n, as it should . For n = 0 it agrees with eq .
(12) for all B - a consequence of the Bayesian treat-
ment of the background subtraction . It would also be
of interest to be able to include an uncertainty in the
value of B into this analysis, but the complex depen-
dence of eqs . (19) on B seams to preclude anything
other than the numerical approach suggested in sec-
tion 2 .1 . A similar remark would apply to the various
algorithms for background subtraction suggested by
Prosper [9] .

Swartz [12] has recently extended the analysis lead-
ing to eqs . (19) to include normalization to a sample of
subsidiary events . There are then normalization uncer-
tainties due to Poisson (actually trinomial) fluctuations
in the number of those events. Within the statistical
model adopted, the result (eq . (5) in his paper) is exact
but quite complex ; some numerical results are given in
his tables I and II . Since Swartz's result and our eq .
(20) are based on the same formalism, it is to be
expected that our equation should give results corre-
sponding to his tables . Using orr= 11t/_D in eq . (20),
where D is the number of normalizing events, we find
agreement [13] within - 1% for the B = 0 cases. For
the B * 0 cases the agreement is within -2% for
D = 50 or 100. Our approximations lead to differences
of - 10% when D = 10, since o r is then quite large
(> 30%) . As in section 3, we conclude that, for the
smaller values of orr commonly encountered, our sim-
ple formula suffices also for this case .

5 . Conclusion
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We have found a convenient solution to the prob-
lem of introducing the systematic uncertainty into the
upper limit R� quoted for a branching ratio experi-
ment that has n candidate events and a best estimate S
of the sensitivity with relative uncertainty Q, :
U�/S, where
U� = U»o(1 + (U,~o - n)Q,/2) .

	

(21)
U� () is the usual upper limit quoted for a Poisson
parameter when n events are observed . For the most
common case of n = 0 and 90% CL, eq . (21) reduces to
U(, = 2.30(1 + 2 .30o,r2/2) .

	

(22)
As expected, the Poisson upper limit is relaxed when
one incorporates the systematic uncertainty, but the
effect is quite small in common cases (e.g ., o,,. < 10%) .
The formula allows one to combine quantitatively the
statistical and systematic effects, in the same spifit
(and with the same ease) that one normally combines
them in the total uncertainty on a point estimate . The
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same general approach can be used when there is an
accurately known background . More complex cases can
require a numerical treatment .
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